
Received August 8, 2019, accepted August 26, 2019, date of publication September 5, 2019, date of current version September 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939735

Reinforcement Learning for Adaptive Resource

Allocation in Fog RAN for IoT With

Heterogeneous Latency Requirements

ALMUTHANNA NASSAR AND YASIN YILMAZ , (Member, IEEE)
Electrical Engineering Department, University of South Florida, Tampa, FL 33620, USA

Corresponding author: Almuthanna Nassar (atnassar@mail.usf.edu)

This work was supported in part by NSF award number 1737598.

ABSTRACT In light of the quick proliferation of Internet of things (IoT) devices and applications, fog radio
access network (Fog-RAN) has been recently proposed for fifth generation (5G) wireless communications
to assure the requirements of ultra-reliable low-latency communication (URLLC) for the IoT applications
which cannot accommodate large delays. To this end, fog nodes (FNs) are equipped with computing,
signal processing and storage capabilities to extend the inherent operations and services of the cloud to
the edge. We consider the problem of sequentially allocating the FN’s limited resources to IoT applications
of heterogeneous latency requirements. For each access request from an IoT user, the FN needs to decide
whether to serve it locally at the edge utilizing its own resources or to refer it to the cloud to conserve its
valuable resources for future users of potentially higher utility to the system (i.e., lower latency requirement).
We formulate the Fog-RAN resource allocation problem in the form of a Markov decision process (MDP),
and employ several reinforcement learning (RL) methods, namely Q-learning, SARSA, Expected SARSA,
andMonte Carlo, for solving theMDP problem by learning the optimum decision-making policies.We verify
the performance and adaptivity of the RLmethods and compare it with the performance of the network slicing
approach with various slicing thresholds. Extensive simulation results considering 19 IoT environments
of heterogeneous latency requirements corroborate that RL methods always achieve the best possible
performance regardless of the IoT environment.

INDEX TERMS Resource allocation, fog RAN, 5G cellular networks, low-latency communications, IoT,
Markov decision process, reinforcement learning.

I. INTRODUCTION

There is an ever-growing demand for wireless communica-
tion technologies due to several reasons such as the increasing
popularity of Internet of Things (IoT) devices, the widespread
use of social networking platforms, the proliferation of
mobile applications, and the current lifestyle that has become
highly dependent on technology in all aspects. It is expected
that the number of connected devices worldwide will reach
three times the global population in 2022 with 3.6 devices
per capita. However, in some regions, such as North Amer-
ica, the number of connected devices is projected to reach
about 13.4 devices per capita by 2022, which makes the
massive IoT a very common concept. This trend of massive
IoT will generate an annual global IP traffic of 4.8 zettabytes

The associate editor coordinating the review of this manuscript and
approving it for publication was Shadi Alawneh.

by 2022, which corresponds to 4-times the traffic in 2016 and
184-times the traffic in 2005, in which wireless and mobile
devices will account for 71% of this forecast [1]. This
unprecedented demand for mobile data services makes it
unbearable for service providers with the current third gen-
eration (3G) and fourth generation (4G) networks to keep
pace with it [2]. The design criteria for fifth generation (5G)
wireless communication systems will include providing
ultra-low latency, wider coverage, reduced energy usage,
increased spectral efficiency, more connected devices,
improved availability, and very high data rates of multi
giga-bit-per-second (Gbps) everywhere in the network
including cell edges [3]. Several radio frequency (RF) cov-
erage and capacity solutions are proposed to fulfill the goals
of 5G including, beamforming, carrier aggregation, higher
order modulation, and dense deployment of small cells [4].
Millimeter-wave (mm-wave) frequency range is likely to be

128014 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

A. Nassar, Y. Yilmaz: RL for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements

utilized in 5G because of the spacious bandwidths available
in these frequencies for cellular services [5]. Massive multi-
input-multi-output (MIMO) is potentially involved for excel-
lent spectral efficiency and superior energy efficiency [6].
To cope with the growing number of IoT devices and the

increasing amount of traffic for better user satisfaction, cloud
radio access network (C-RAN) architecture is suggested for
5G, in which a powerful cloud controller (CC) with pool
of baseband units (BBU) and storage pool supports large
number of distributed remote radio units (RRU) through
high capacity fronthaul links [7], [8]. The C-RAN is char-
acterized by being clean as it reduces energy consumption
and improves the spectral efficiency due to the centralized
processing and collaborative radio [9]. However, in light of
themassive IoT applications and the corresponding generated
traffic, C-RAN structure places a huge burden on the central-
ized CC and its fronthaul, which causes more delay due to
limited fronthaul capacity and busy cloud servers in addition
to the large transmission delays [10], [11].

A. F-RAN AND HETEROGENEOUS IoT
The latency issue in C-RAN becomes critical for IoT applica-
tions that cannot tolerate such delays. And that is the reason
fog radio access network (F-RAN) is introduced for 5G,
where fog nodes (FN) are not only limited to perform RF
functionalities but also empowered with caching, signal pro-
cessing and computing resources [12], [13]. This makes FNs
capable of independently delivering network functionalities
to end users at the edge without referring them to the cloud
to tackle the low-latency needs.
IoT applications have various latency requirements. Some

applications are more delay-sensitive than others, while some
can tolerate larger delays [14]–[16]. Hence, especially in a
heterogeneous IoT environment with various latency needs,
FN must allocate its limited and valuable resources in a smart
way. In this work, we present a novel framework for resource
allocation in F-RAN for 5G by employing reinforcement
learning methods to guarantee the efficient utilization of lim-
ited FN resources while satisfying the low-latency require-
ments of IoT applications.

B. LITERATURE REVIEW
For the last several years, 5G and IoT related topics have
been of great interest to many researchers in the wireless
communications field. Recently, a good number of works
in the literature focused on achieving low latency for IoT
applications in 5G F-RAN. For instance, resource alloca-
tion based on cooperative edge computing has been studied
in [17]–[21] for achieving ultra-low latency in F-RAN. The
work in [17] proposed a mesh paradigm for edge computing,
where the decision-making tasks are distributed among edge
devices instead of utilizing the cloud server. The authors
in [18], [21] considered heterogeneous F-RAN structures
including, small cells and macro base stations, and provided
an algorithm for selecting the F-RAN nodes to serve with
proper heterogeneous resource allocation. The number of

F-RAN nodes and their locations have been investigated
by [22]. Content fetching is used in [7], [19] to maximize
the delivery rate when the requested content is available in
the cache of fog access points. In [23], cloud predicts users’
mobility patterns and determines the required resources for
the requested contents by users, which are stored at cloud
and small cells. The work in [20] addressed the issue of
load balancing in fog computing and used fog clustering
to improve user’s quality of experience. The congestion
problem, when resource allocation is done based on the best
signal quality received by the end user, is highlighted in
[24], [25]. The work in [24] provided a solution to balance the
resource allocation among remote radio heads by achieving
an optimal downlink sum-rate, while [25] offered an optimal
solution based on reinforcement learning to balance the load
among evolved nodes for the arrival of machine-type commu-
nication devices. To reduce latency, soft resource reservation
mechanism is proposed in [26] for uplink scheduling. The
authors of [27] presented an algorithm that works with the
smooth handover scheme and suggested scheduling policies
to ease the user mobility challenge and reduce the application
response time. Radio resource allocation strategies to opti-
mize spectral efficiency and energy efficiency while main-
taining a low latency in F-RAN are proposed in [28]. With
regard to learning for IoT, [29] provided a comprehensive
study about the advantages, limitations, applications, and key
results relating to machine learning, sequential learning, and
reinforcement learning. Multi-agent reinforcement learning
was exploited in [30] to maximize network resource utiliza-
tion in heterogeneous networks by selecting the radio access
technology and allocating resources for individual users. The
model-free reinforcement learning approach is used in [31]
to learn the optimal policy for user scheduling in heteroge-
neous networks to maximize the network energy efficiency.
Resource allocation in non-orthogonal-multiple-access based
F-RAN architecture with selective interference cancellation
is investigated in [32] to maximize the spectral efficiency
while considering the co-channel interference. With the help
of task scheduler, resource selector, and history analyzer, [33]
introduced an FN resource selection algorithm in which the
selection and allocation of the best FN to execute an IoT task
depends on the predicted run-time, where stored execution
logs for historical performance data of FNs provide realistic
estimation of it.

A comprehensive study of network slicing in 5G system is
considered in [34], [35]. Issues and challenges of network
slicing in Fog RAN is investigated in [34], where authors
presented key techniques and solutions in regards to radio
and cache resource management as well as social-aware slic-
ing. [35] provides a comprehensive survey on network slicing
which embraces the key principles, enabling technologies,
challenges, standardization, and solutions including slicing
solutions for 5G system, and illustrates the requirements
and diverse use cases of network slicing considering RAN
sharing, end-to-end orchestration and management involving
the radio access, transport and core networks. Radio resource

VOLUME 7, 2019 128015

A. Nassar, Y. Yilmaz: RL for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements

allocation for different network slices is exploited
in [36]–[38] to support various quality-of-service (QoS)
requirements and minimize the queuing delay for low latency
requests, in which network is logically partitioned into a
high-transmission-rate slice for mobile broadband (MBB)
applications, and a low-latency slice which supports ultra-
reliable low-latency communication (URLLC) applications.
The authors in [38] proposed a hierarchical radio resource
allocation architecture for network slicing in which a global
radio resource manager (GRRM) allocates subchannels to
local radio resource managers (LRRMs) in slices, which then
assign resources to their end users. However, the resource
allocation problem considered in the network slicing litera-
ture focuses on the dynamics of resource allocation among
various network slices and layers, i.e., decides on allocation
of resources between FNs for URLLC applications and RRUs
for MBB applications while it is infeasible for mobile opera-
tors and service providers to keep changing the distribution of
resources in the network due to the huge accompanying oper-
ational expenditure (OPEX) to cover all required hardware,
software and license swaps as well as the implementation
of any necessary frequency reuse plans and fronthaul links
capacity upgrade, and the impact of outages and prolonged
testing, optimizing and fine tuning the network performance
follow every single change. Hence, deciding on resource
allocation among network slices should be so thoughtful and
deliberate, and only after assuring that each slice utilizes its
allocated resources efficiently. In this work, we zoom in to the
allocated limited resources to FNs to optimize and guarantee
their efficient utilization. We compare the performance and
adaptivity of the RLmethods to the performance of the utility
filtering-based network slicing approach with various slicing
thresholds.

C. CONTRIBUTIONS
With the motivation of satisfying the low-latency require-
ments of heterogeneous IoT applications through F-RAN,
we provide a novel framework for allocating limited
resources to users that guarantees efficient utilization of
the FN’s limited resources. In this work, we develop
Markov Decision Process (MDP) formulation for the con-
sidered resource allocation problem and employ diverse
reinforcement learning (RL) methods for learning optimum
decision-making policies adaptive to the IoT environment.
Specifically, in this paper we propose an MDP formulation
for the considered F-RAN resource allocation problem, and
investigate the use of various RL methods, Q-learning (QL),
SARSA, Expected SARSA (E-SARSA), and Monte Carlo
(MC), for learning the optimal fine-grained decision making
policies of the MDP problem to improve efficiency. We also
provide extensive simulation results in various IoT environ-
ments of heterogeneous latency requirements to evaluate the
performance and adaptivity of the four RL methods and
compare it to the performance of the network slicing approach
with various slicing thresholds.

FIGURE 1. Fog-RAN system model. The FN serves heterogeneous latency

needs in the IoT environment, and is connected to the cloud through the

fronthaul links represented by solid lines. Solid red arrows represent

local service by FN to satisfy low-latency requirements, and dashed

arrows represent referral to the cloud to save FN’s limited

resources.

The remainder of the paper is organized as follows.
Section II introduces the system model. The proposed MDP
formulation for the resource allocation problem is given in
Section III. Optimal policies and the related RL algorithms
are discussed in Section IV. Simulation results are presented
in Section V. Finally, we conclude the paper in Section VI.
A list of notation and abbreviations used throughout the paper
is provided in Table 1.

II. SYSTEM MODEL

We consider the F-RAN structure shown in Fig. 1, in which
FNs are connected through the fronthaul to the cloud con-
troller (CC), where a massive computing capability, cen-
tralized baseband units (BBUs) and cloud storage pooling
are available. To ease the burden on the fronthaul and the
cloud, and to overcome the challenge of the increasing num-
ber of IoT devices and low-latency applications, FNs are
empowered with capability to deliver network functionalities
at the edge. Hence, they are equipped with caching capac-
ity, computing and signal processing capabilities. However,
these resources are limited, and therefore need to be utilized
efficiently. An end user attempts to access the network by
sending a request to the nearest FN. The FN takes a decision
whether to serve the user locally at the edge using its own
computing and processing resources or refer it to the cloud.
We consider the FN’s computing and processing capacity to
be limited to N resource blocks (RBs). User requests arrive
sequentially and decisions are taken quickly, so no queuing
occurs.

128016 VOLUME 7, 2019

A. Nassar, Y. Yilmaz: RL for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements

TABLE 1. Summary of notations and abbreviations.

TheQoS requirements of awireless user are typically given
by the latency requirement and throughput requirement. IoT
applications have various levels of latency requirement, hence

it is sensible for the FN to give higher priority for serving
the low-latency applications. To differentiate between similar
latency requirements we also consider the risk of failing
to satisfy the throughput requirement. This risk is related
to the ratio of the achievable throughput to the throughput
requirement. The achievable throughput is characterized by
the signal-to-noise ratio (SNR) through Shannon channel
capacity. Shannon’s fundamental limit on the capacity of
a communications channel gives an upper bound for the
achievable throughput, as a function of available bandwidth
(B) in Hz and SNR in dB, C = B log2 (1+ SNR). Hence,
we define the utility of an IoT user request to be a function of
latency requirement, l (in milliseconds), throughput require-
ment, ! (in bits per second), and channel capacity, C (in bits
per second), i.e., u = f (l,!,C). Since the utility should be
inversely proportional to the latency requirement, and directly
proportional to the achievable throughput ratio, µ = C/!,
we define utility as

u = (µ⇣ /l�), (1)

where , ⇣,� > 0 are mapping parameters. This provides a
flexible model for utility. By selecting the parameters , ⇣,�

a desired range of u and importance levels for latency and
throughput requirements can be obtained. Since F-RAN is
intended for satisfying low-latency requirements, typically,
more weight should be given to latency by choosing larger
� values.

FNs should be smart to learn how to decide (serve/refer
to the cloud) for each IoT request (i.e., how to allocate its
limited resources), so as to achieve the conflicting objectives
of maximizing the average total utility of served users over
time and minimizing its idle (no-service) time. The system
objective can be stated as a constrained optimization problem,

max
a0,...,aT�1

TX

t=0
{at=serve}ut and min

a0,...,aT�1

TX

t=0
{at=reject}

subject to
TX

t=0
{at=serve} = N , (2)

where at denotes the action taken at time t (either serves the
request locally or rejects it and refers to cloud), T denotes
the termination time when all RBs are filled, N denotes the
number of RBs, and {·} is the indicator function taking value
1 if its argument is true and 0 if false. The goal is to find
the optimum decision policy {a0, a1, . . . , aT�1} for an IoT
environment which randomly generates {ut }. Note that the
final decision is always aT = serve by definition, hence
omitted in the policy representation.

One straightforward approach to deal with this resource
allocation problem is to apply network slicing [34], [35]
based on the user utility, in which the network is logically
partitioned into two slices [36]–[38], a fog slice handles
high-utility IoT requests of low-latency demand, and cloud
slice considers low-utility users. Hence, a filtering standard
is required for the FN to direct users’ requests to their

VOLUME 7, 2019 128017

A. Nassar, Y. Yilmaz: RL for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements

corresponding network slices. For instance, we can define a
threshold rule, such as ‘‘serve locally if u > 5’’, if we classify
all applications in an IoT environment into ten different utili-
ties u 2 {1, 2, . . . , 10}, 10 being the highest utility. However,
such a policy is sub-optimum since the FN will be waiting for
a user to satisfy the threshold, which will increase the FN’s
idle time and make the CC busier. The main drawback of this
policy is that it cannot adapt to the dynamic IoT environment
to achieve the objective. For instance, when the user utilities
are almost uniformly distributed, a very selective policy with
a high threshold will stay idle most of the time, whereas an
impatient policy with a low threshold will in general obtain a
low average served utility. Amild policywith threshold 5may
in general perform better than the extreme policies, yet it
will not be able adapt to different IoT environments. A better
solution for the F-RAN resource allocation problem is to use
RL techniques which can continuously learn the environment
and adapt the decision rule accordingly.

III. MDP PROBLEM FORMULATION

RL can be thought as the third paradigm of machine learning
in addition to the other two paradigms, supervised learning
and unsupervised learning. The key point in the proposed
RL approach is that FN learns about the IoT environment by
interaction and then adapts to it. FN gains rewards from the
environment for every action it takes, and once the optimum
policy of actions is learned, FN will be able to maximize its
expected cumulative rewards, adapt to the IoT environment,
and achieve the objective.
For an access request from a user with utility ut , at time t ,

if the FN decides to take the action at = serve, which means
to serve the user at the edge, then it will gain an immediate
reward rt and one of the RBs will be occupied. Otherwise, for
the action at = reject , which means to reject serving the user
at the edge and refer it to the cloud, the FN will maintain its
available RBs and get a reward rt . The value of rt depends
on at and ut . For tractability, we consider quantized utility
values, ut 2 {1, 2, . . . ,U}.
We define the state st of the FN at any time t as

st = 10 bt + ut , (3)

where bt 2 {0, 1, 2, . . . ,N } is the number of occupied
RBs at time t . Note that the successor state st+1 depends
only on the current state st , the utility ut+1 of the next
service request, and the action taken (serve or reject), satisfy-
ing the Markov property P(st+1|s0, . . . , st�2, st�1, st , at) =
P(st+1|st , at), i.e., Markov state. Hence, we formulate the
Fog-RAN resource allocation problem in the form of a
Markov decision process (MDP), which is defined by the
tuple (S,A,Pa

ss0 ,R
a
ss0), where S is the set of all possible

states, i.e., st 2 S , A is the set of actions, i.e., at 2 A =
{serve, reject}, Pa

ss0 is the transition probability from state s
to s0 when the action a is taken, i.e., Pa

ss0 = P(s0|s, a), where
s0 is a shorthand notation for the successor state, andRa

ss0 is the
immediate reward received when the action a is taken at state
s which ends up in state s0, e.g., rt = Rat

st st+1 2 R. The return

Gt is defined as the cumulative discounted rewards received
from time t onward and given by

Gt = rt + � rt+1 + � 2rt+2 + . . . =
1X

j=0

� jrt+j, (4)

where � 2 [0, 1] is the discount factor. � represents the
weight of future rewards with respect to the immediate
reward, � = 0 ignores future rewards, whereas � = 1
means that future rewards are of the same importance as the
immediate rewards. The objective of the MDP problem is to
maximize the expected initial return E[G0].

In the presented MDP, for an FN that has a computing and
processing capacity of N RBs, there are U (N + 1) states,
st 2 S = {1, 2, 3, . . . ,U (N + 1)}, where U is the greatest
discrete utility level. At the initiation time t = 0, all RBs are
available, i.e., b = 0, hence from (3), there are U possible
initial states s0 2 {1, 2, . . . ,U} dependent on u0. The MDP
terminates at time T when all RBs are occupied, i.e., bT = N ,
hence similarly there are U terminal states sT 2 {UN + 1,
UN +2, . . . ,U (N +1)}. Note that a policy treating the MDP
problem can continue operating after T as in-use RBs become
available in time by taking actions similarly to its operation
before T .
The reward mechanism Ra

ss0 is typically chosen by the
system designer according to the objective. We propose a
rewardmechanism based on the received utility and the action
taken for it. Specifically, at time t , based on ut and at , the FN
receives an immediate reward rt 2 R = {rsh, rsl, rrh, rrl},
and moves to the successor state st+1, where rsh is the reward
for serving a high-utility request, rsl is the reward for serving
a low-utility request, rrh is the reward for rejecting a high-
utility request, and rrl is the reward for rejecting a low-utility
request. A request is determined as high-utility or low-utility
relative to the environment based on a threshold uh, which
is a design parameter dependent on the utility distribution in
IoT environment. For instance, uh can be selected as a certain
percentile, such as the 50th percentile, i.e., median, of the util-
ities in the environment. Hence, the proposed reward function
is given by

rt =

8
>>><

>>>:

rsh, if at = serve, ut � uh
rrh, if at = reject, ut � uh
rsl, if at = serve, ut < uh
rrl, if at = reject, ut < uh.

(5)

Remark 1: Note that the threshold uh does not have a
definitive meaning with respect to the system requirements,
i.e., there is no requirement saying that requests with util-
ity lower/greater than uh must be rejected/served. The goal
here is to introduce an internal reward mechanism for the
RL approach to facilitate learning the expected future gains,
as will be clear later in this section and the following section.
For an effective learning performance, the reward mechanism
should be simple enough to guide the RL algorithm towards
the system objective (see (2)) [39]. That is, its role is not to
imitate the system objective closely to make the algorithm

128018 VOLUME 7, 2019

A. Nassar, Y. Yilmaz: RL for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements

TABLE 2. State transitions of 5-RB FN for a sample of IoT requests and

random actions with U = 10,uh = 6.

FIGURE 2. State transition graph for the MDP episode given in Table 2 for

an FN with N = 5,U = 10,uh = 6. Non-terminal states and terminal state

are represented by circles and squares, respectively, and labeled by the

states names. Filled circles represent actions, and arrows show the

transitions with corresponding rewards.

achieve it at once, but to resemble it in a simple manner to let
the algorithm iteratively achieve a high performance.
Remark 2: Although a threshold uh is utilized in the pro-

posed reward mechanism, its use is fundamentally differ-
ent than the utility filtering-based policy in network slicing
approach which always accepts/rejects requests with utility
greater/lower than a threshold. While the utility filtering-
based policy considers only the immediate gain from the cur-
rent utility, the algorithms tackling theMDP problem, such as
the RL algorithms, consider the expected return E[G0] which
includes the immediate reward and expected future rewards.
Hence, the threshold uh does not necessarily cause the algo-
rithm to accept/reject requests with utility greater/lower than
uh; it only plays an internal role in learning the expected
future rewards.
State transitions for an FN with 5 RBs (N = 5), 10 utility

levels (U = 10), and uh = 6, a sample of IoT requests
with utilities ut , and random actions at are shown in Table 2.
At time t , being at state st , and taking the action at will
result in getting an immediate reward rt and moving to the
successor state st+1. The state transitions in Table 2 represent
an episode of the MDP, it starts at t = 0 and terminates
at T = 10 with the states 5 ! 9 ! 13 ! 13 !
28 ! 36 ! 31 ! 40 ! 47 ! 49 ! 54. The
dynamics of this episode is shown through a state transition
graph in Fig. 2, in which non-terminal states and terminal
state are represented by circles and squares, respectively, and
labeled by the states names, filled circles represent actions,
and arrows show the transitions with corresponding rewards.

IV. OPTIMAL POLICIES

The state-value function V (s), shown in (6), represents the
long-term value of being in state s in terms of the expected
return which can be collected starting from this state onward
till termination. Hence, the terminal state has zero value since

FIGURE 3. The first 3 levels of the backup diagram for the MDP with 2-RB

FN (N = 2). Non-terminal states and terminal states are represented by

open circles and squares, respectively, and labeled by the states

according to (3). rs 2 {rsh, rsl } and rr 2 {rrh, rrl } are the rewards for

serving and rejecting, respectively, and depend on uh.

no reward can be collected from that state, and the value
of initial state is equal to the objective function E[G0]. The
state value can be viewed also in two parts: the immediate
reward from the action taken and the discounted value of the
successor state where we move to. Similarly, the action-value
function Q(s, a) is the expected return that can be achieved
after taking the action a at state s, as shown in (7). The action
value function tells how good it is to take a particular action
at a given state. The expressions in (6) and (7) are known as
the Bellman expectation equations for state value and action
value, respectively [39],

V (s) = E[Gt |st = s] = E[rt + �V (s0)|s], (6)
Q(s, a) = E[Gt |s, a] = E[rt + �Q(s0, a0)|s, a], (7)

where a0 denotes the successor action at the successor state s0.
Since (6) shows the relationship between the value of a state
and its successor states, similarly for the value of an action
in (7), it is useful to show the dynamics of the MDP in a
backup diagram, as shown in Fig. 3 for a 2-RB FN (N = 2).
The backup diagram provides an overview for the possible
episodes of the considered MDP, where the minimum termi-
nation time required to reach a terminal state, at which all
RBs are occupied (b = N), is T = 2 through the episode
u0 ! 10 + u1 ! 20 + u2, i.e., serve all the time. Note that
early termination does not necessarily maximize the return.

The objective of the FN in the presented MDP is to utilize
the N resource blocks for high-utility IoT applications in a
timely manner. This can be done through maximizing the
value of initial state, which is equal to the MDP objective
E[G0]. To this end, an optimal decision policy is required,
which is discussed next.

A policy ⇡ is a way of selecting actions. It can be defined
as the set of probabilities of taking a particular action given
the state, i.e., ⇡ = {P(a|s)} for all possible state-action
pairs. The policy ⇡ is said to be optimal if it maximizes

VOLUME 7, 2019 128019

A. Nassar, Y. Yilmaz: RL for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements

the value of all states, i.e., ⇡⇤ = argmax
⇡

V⇡ (s), 8s. Hence,
to solve the considered MDP problem, the FN needs to find
the optimal policy through finding the optimal state-value
function V ⇤(s) = max

⇡
V⇡ (s), which is similar to finding the

optimal action-value functionQ⇤(s, a) = max
⇡

Q⇡ (s, a) for all
state-action pairs. From (6) and (7), we can write the Bellman
optimality equations for V ⇤(s) and Q⇤(s, a) as,

V ⇤(s) = max
a2A

Q⇤(s, a) = max
a2A

E[rt + �V ⇤(s0)|s, a], (8)

Q⇤(s, a) = E[rt + � max
a02A

Q⇤(s0, a0)|s, a]. (9)

The notion of optimal state-value function V ⇤(s) greatly
simplifies the search for optimal policy. Since the goal of
maximizing the expected future rewards is already taken care
of the optimal value of the successor state,V ⇤(s0) can be taken
out of the expectation in (8). Hence, the optimal policy is
given by the best local actions at each state. Dealing with
Q⇤(s, a) to choose optimal actions is even easier, becausewith
Q⇤(s, a) there is no need for the FN to do the one-step-ahead
search and instead it picks the best action that maximizes
Q⇤(s, a) at each state. Optimal actions are defined as follows,

a⇤ = argmax
a2A

Q⇤(s, a) = argmax
a2A

E[rt |s, a]+ �V ⇤(s0|s, a).
(10)

After discretizing the utility into U levels, the state space
becomes tractable with cardinality |S| = U (N + 1), hence
in this case the optimal policy can be learned by estimating
the optimal value functions (either (8) or (9)) using tabular
methods such as model-free RL methods (e.g., Monte Carlo,
SARSA, Expected SARSA, and Q-learning), which are also
called approximate dynamic programming methods [39].
Since the expectations involved in value functions are not
tractable to find in closed form, we resort to model-free RL
methods in this work instead of exact dynamic programming.
Continuous utility values (see (1)) would yield infinite dimen-
sional state space, and thus require function approximation
methods, such as deep Q-learning known as DQN [40], for
predicting the value function at different states, which we
leave to a future work.
In our MDP problem, firstly FN receives a request from an

IoT application of utility u, then it makes a decision to serve
or reject , meaning that the reward for serving rs 2 {rsh, rsl}
and the reward for rejecting rr 2 {rrh, rrl} are known at the
time of decision making. Thus, from (6) and (10), the optimal
action at state s is given by

a⇤ =

8
><

>:

serve, if rs + �Eu[V ⇤(s0serve = 10(b+ 1)+ ut+1)]
> rr + �Eu[V ⇤(s0reject = 10b+ ut+1)],

reject, otherwise,
(11)

where s0serve is the successor state when a = serve, s0reject is
the successor state when a = reject , andEu is the expectation
with respect to the utilities u in the IoT environment.

Algorithm 1 Learning Optimum Policy Using Monte Carlo
1: Select: � 2 [0, 1], {uh, rsh, rsl, rrh, rrl} 2 R;
2: Input: N (number of RBs);
3: Initialize: V (s) 0, 8s; Returns(s) (an array to save

states’ returns in all iterations);
4: for iteration = 0, 1, 2, . . . do
5: Initialize: b 0;
6: Generate an episode: Take actions using (11) until

termination;
7: G(s) sum of discounted rewards from s till terminal

state for all states appearing in the episode;
8: Append G(s) to Returns(s);
9: V (s) average(Returns(s));

10: if V (s) converges for all s then
11: break
12: V ⇤(s) V (s), 8s;
13: end if
14: end for
15: Use the estimated V ⇤(s) to find optimal actions using

(11).

A popular way to compute the optimal state values,
required by the optimal policy as shown in (11), is through
value iteration by Monte Carlo computations. The procedure
to learn the optimal policy from the IoT environment using
Monte Carlo is given in Algorithm 1. Given the parameters
N , � , {uh, rsh, rsl, rrh, rrl}, and the data of IoT users {ut },
Algorithm 1 shows how to learn the optimal policy for the
considered MDP problem. Note that {ut } can be real data
from the IoT environment, as well as from simulations if
the probability distribution is known. The Returns array at
line 2 represents a matrix to save the return of each state at
every episode, which corresponds to an iteration. At line 3,
we initialize all state values with zeros. Starting from the
initial state in each iteration b = 0, the current state values,
which constitutes the current policy, are used to take actions
until the terminal state is reached. To promote exploring
different states randomized actions can be taken sometimes at
line 6 [39]. G(s) in lines 7 and 8 represents a vector of returns
of all states appearing in the episode. Inserting these values
into the Returns array, the state values are updated by taking
the average as shown in line 9. The algorithm stops when all
state values converge, the converged values are then used to
determine actions as in (11).

Similar to (11), we can write the optimal action at state s
in terms of Q⇤(s, a) as follows,

a⇤ =
(
serve, if Q⇤(s, serve) > Q⇤(s, reject),
reject, otherwise.

(12)

The optimal action-value functions, required by the opti-
mal policy as shown in (12), can be also computed through
the value iteration technique using different RL algorithms.
The procedure to learn the optimal policy from the IoT

128020 VOLUME 7, 2019

A. Nassar, Y. Yilmaz: RL for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements

environment using the model-free SARSA, E-SARSA, and
Q-learning methods is given in Algorithm 2.

Algorithm 2 Learning Optimum Policy Using QL,
E-SARSA, and SARSA
1: Select: {� , ✏} 2 [0, 1], ↵ 2 (0, 1], n 2 {1, 2, . . .};
2: Input: N (number of RBs);
3: Initialize: Q(s, a) arbitrarily in Q, 8(s, a);
4: Initialize: b 0;
5: for t = 0, 1, 2, . . . do
6: Take action at according to ⇡ (e.g., ✏-greedy), and

store rt and st+1;
7: if t � n� 1 then
8: ⌧ t + 1� n;
9: QL: G Pt+1

j=⌧ � (j�⌧)rj + � nmax
a

Q(st+1, a);

10: E-SARSA: G Pt+1
j=⌧ � (j�⌧)rj +

� nEa[Q(st+1, a)];
11: SARSA: G Pt+1

j=⌧ � (j�⌧)rj + � nQ(st+1, at+1);
12: Q(s⌧ , a⌧) Q(s⌧ , a⌧)+ ↵[G� Q(s⌧ , a⌧)];
13: Update Q with Q(s⌧ , a⌧);
14: end if
15: if Q(s, a) converges for all (s, a) then
16: Q⇤(s, a) Q(s, a);
17: break
18: end if
19: end for
20: Use Q⇤(s, a) estimated in Q for ⇡⇤ using (12)

Algorithm 2 shows how FN learns the optimal policy for
the MDP by estimating Q⇤(s, a) using QL, E-SARSA, and
SARSA methods. The step size parameter ↵ represents the
weight we give to the change in our experience, i.e., the
learning rate, ✏ is the probability of making a random action
for exploration, and the batch size n represents the number of
time steps after which we update the Q(s, a) values. The Q
array at line 3 represents a matrix to save the updated values
of the action-value functions of all states and actions in each
iteration. In each iteration, we take an action, observe and
store the collected reward and the successor state. Actions are
taken according to a policy ⇡ such as the ✏-greedy policy in
line 6, in which a random action with probability ✏ is taken
to explore new rewards, and an optimal action (see (12))
is taken with probability (1 � ✏) to maximize the rewards;
with ✏ = 0, the policy becomes greedy. The condition
at line 7 represents the time, in terms of the batch size,
at which we start updating the Q values of the actions taken
in the previously visited states. The way target G is com-
puted for QL, E-SARSA and SARSA is shown at lines 9-11.
G represents the return collected starting from time (t+1�n)
to n time-steps ahead, and it contains two parts, the dis-
counted collected rewards and a function of the action-value
for future rewards. The latter part changes for QL, E-SARSA
and SARSA. For QL, the maximum action-value is used
considering all possible actions which can be taken from the
state at t + 1. Whereas, E-SARSA uses the expected value

of Q(st+1, a) over possible actions at state st+1, and SARSA
uses Q(st+1, at+1) considering the action that will be taken
at time t + 1 according to the current policy. The way to
update the action-value is shown at line 12, where ⌧ is the
timewhoseQ estimate is being updated. At line 13, thematrix
Q is updated with the new Q value and used to make future
decisions. The algorithm stops when all Q values converge.
The converged values represent the optimal action values Q⇤

which are then used to determine optimal actions as in (12).
Recall that the FN objective is to maximize the expected

total served utility and minimize the expected termination
time, as shown in (2). Hence, to compare the performance
of FN when using QL, SARSA, E-SARSA and MC pro-
vided in Algorithms 1 and 2 with the performance of a
fixed-threshold algorithm in the utility filtering-based net-
work slicing, which does not learn from the interactions with
environment, we define an objective performance metric R as

R = E
" MX

m=1

um � ✓ (T �M)

#

, (13)

where a served utility is denoted with um, the number of
served IoT requests in an episode is denoted withM , (T �M)
represents the total idle time for RBs, and ✓ is a penalty for
being idle.

V. SIMULATIONS

We next provide simulation results to evaluate the per-
formance of FN when implementing the RL methods,
Q-learning, SARSA, Expected-SARSA, and Monte Carlo,
given in Algorithms 1 and 2. We also compare the RL-based
FN performance with the FN performance when utility
filtering-based network slicing is employed with a fixed
thresholding algorithm. We evaluate the performances in var-
ious IoT environments with different compositions of IoT
latency requirements. For brevity, we do not consider the
effect of ratio of the achievable throughput to the through-
put requirement in assessing the utility of a service request.
Specifically, we consider 10 utility classes with different
latency requirements to exemplify the variety of IoT appli-
cations in an F-RAN setting. That is, we consider ⇣ = 0,
� = 1, = 1 in (1), and discretize the latency-based utility
to 10 classes (U = 10). The utility values 1, 2, . . . , 10 may
represent the following IoT applications, respectively: smart
farming, smart retail, smart home, wearables, entertainment,
smart grid, smart city, industrial Internet, autonomous vehi-
cles, and connected health. By changing the composition of
utility classes, we generate 19 scenarios of IoT environments,
6 of which are summarized in Table 3. Higher density of high-
utility users makes the IoT environment richer in terms of
low-latency IoT applications.

Denoting an IoT environment of a particular utility dis-
tribution with E , we show in Table 3 the statistics of E1,
E4, E7, E10, E15, and E19. The first 10 rows in the table
provide detailed information about the proportion of each
utility class in an IoT environment corresponding to a

VOLUME 7, 2019 128021

A. Nassar, Y. Yilmaz: RL for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements

TABLE 3. Utility distributions for various IoT environments with

heterogeneous latency requirements.

TABLE 4. Summary of simulation parameters and their values.

latency requirement. The last two rows illustrate the quality
or richness of IoT environments, where ⇢ is the probability
of a utility being greater than 5, and ū is the mean value of
utilities in the environment. In the considered 19 scenarios, ⇢
increases in steps of 0.05 from 5% to 95% for E1, E2, . . . , E19
respectively. The remaining 13 scenarios have statistics pro-
portional to their ⇢ values. We started with a general scenario
given by E7, and changed ⇢ to obtain the other scenarios.
The simulation parameters shown in Table 4 are used

for the presented results in this section. The rewards
R = {rsh, rsl, rrh, rrl} are chosen to facilitate learning the
optimal policy. We consider that the FN is equipped with
computing, signal processing and storage resources of 15
resource blocks (RBs), i.e., N = 15. In a particular environ-
ment E , the threshold that defines ‘‘high utility’’ is set to the
mean of all utilities, i.e., uh = ū.We applied the greedy policy
in our simulations, hence ✏ = 0.
We firstly consider the MDP formulation for the IoT envi-

ronment given by scenario E7 shown in Table 3. By inter-
action with the environment, the FN updates the state value
functions which converge to the optimum policy. Fig. 4,
shows how the FN learns the optimal policy using the Monte
Carlo (MC) method given in Algorithm 1 to estimate the
optimal state values. With 15 RBs, there are 160 states,
the last 10 of which are terminal states with b = 15 for which
V (s) = 0. The state-value functions of 16 states are given
in Fig. 4. The remaining states have values within a standard
deviation � = 0.5 of the selected 16 states. It is seen that for
most of the states the state values converges to the optimal

FIGURE 4. Learning optimum policy of the MDP by applying the Monte

Carlo method given by Algorithm 1 to obtain the optimal state values

required in (11). The IoT environment E7 is considered, and the FN is

equipped with 15 RBs. The 16 state values shown in the figure are a

sample of the 150 non-terminal state values.

FIGURE 5. Learning the optimal action-value function Q⇤
(s, serve)

required in (12) using the Q-learning method given by Algorithm 2.

Q-values converge to the optimal values after around 4000 episodes. The

IoT environment E7 is considered, and the FN is equipped with 15 RBs.

value V ⇤(s) after about 5000 iterations. This number can be
easily exceeded by the number of requests received by FN
during a busy hour from a variety of IoT applications [1].

We next apply SARSA, Expected SARSA and QL in
the IoT environment E7, for learning the optimal policy in
(12) using the estimated Q⇤(s, a) in Algorithm 2. The con-
vergence of Q(s, serve) and Q(s, reject) when using QL is
shown in Figs. 5 and 6, respectively. In our MDP problem,
QL converges slightly faster than E-SARSA, SARSA and
MC since it implements a greedy approach by selecting the
maximum Q(s0, a0) when updating the return Gt as shown
in Algorithm 2. However, this is not a general rule as it
depends on the nature of each problem. There are many
factors affecting the convergence rate, e.g., large values of
the learning rate ↵ make the Q-values bounce around a mean
value, whereas small values causes it to converge slowly.

128022 VOLUME 7, 2019

A. Nassar, Y. Yilmaz: RL for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements

FIGURE 6. Learning the optimal action-value function Q⇤
(s, reject)

required in (12) using the Q-learning method given by Algorithm 2.

Q-values converge to the optimal values after around 5000 episodes. The

IoT environment E7 is considered, and the FN is equipped with 15 RBs.

FIGURE 7. The performance in terms of R for the FN with N = 15,

in various IoT environments when applying the RL methods (QL, SARSA,

E-SARSA and MC) given in Algorithms 1 and 2, and the utility filtering

algorithm in network slicing with different slicing thresholds. RL methods’

performances are indistinguishable here, and better than the

conventional-filtering based network slicing in all environments thanks to

their learning and adaptation capability.

Unnecessary exploration makes the convergence slower,
controlled by the ✏ value in the ✏-greedy policy. The step
size n after which we update the state values or Q-values
affects also the convergence dependent on the problem. For
instance, MC updates the state values at the end of an episode
regardless of how long it is, which makes it slower to exploit
the updated state values in making better actions, whereas
QL, SARSA and E-SARSA using n = 1 update the Q-value
every time step. Unlike MC, the FN needs to keep updating
two Q-values for each state instead of updating one state
value. Hence, we have 300 Q-values to update in order to
learn the optimal policy.
We compare the performance of the RL methods, in terms

of R, as shown in (13), with that of the utility filtering-based

FIGURE 8. The average termination time T in time-steps for FN with

N = 15 in various IoT environments when applying the RL methods (QL,

SARSA, E-SARSA and MC) given by Algorithms 1 and 2, and the utility

filtering algorithm in network slicing with different slicing thresholds.

RL methods manage to have a steady termination time in all

environments.

network slicing with various slicing thresholds in the 19 IoT
environments. The utility filtering algorithm uses the same
threshold for network slicing regardless of the environment.
For the RL methods, we consider the simulation setup shown
in Table 4, and for the utility filtering-based network slicing
we consider all possible slicing thresholds 1, 2, . . . , 10. As
shown in Figs. 7 and 8, the RL methods exhibit the best
performance as they learn how to balance early termination
with higher total served utilities. It never terminates too
early or too late (T ⇡ 27 for all environments as seen
in Fig. 8), as opposed to the utility filtering-based network
slicing which is not adaptive to the environment. As seen
in Fig. 7, the performance of the utility filtering algorithm
with slicing thresholds 1, 2, 3, 8, 9 are steadily below that of
the RL algorithms. The average termination time for slicing
thresholds 1, 2, and 3 is about 15which is theminimum termi-
nation time, though they could not achieve good performance.
Slicing threshold 4 has a comparable performance to RL for
the environments E2 � E5, after which its performance starts
to decline. Although slicing thresholds 5, 6, 7 have good
performances close to RL for environments with medium to
high ⇢, they perform far from RL for IoT environments with
small ⇢. The performance of slicing threshold 10 is much
worse than threshold 9 for all environments due to the long
termination time which exceeds 280 time-steps, thus it does
not appear in Figs. 7 and 8.

The performance of the RL methods is very close
to each other, hence it is not easy to distinguish them
in Figs. 7 and 8. For a clearer view, Fig. 9 compares the
performance of the four RL methods in terms of the perfor-
mance ratio with respect to performance of slicing thresh-
old 4, i.e., (RRL/RThld4). QL has the best performance with an
average performance ratio of 104% in all IoT environments
with a peak of 106% in E9, followed by E-SARSA and MC.

VOLUME 7, 2019 128023

A. Nassar, Y. Yilmaz: RL for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements

FIGURE 9. Comparison between the performance of RL methods in terms

of relative performance with respect to the utility filtering algorithm in

network slicing with slicing threshold 4. QL and SARSA coincide due to

the greedy policy is used in the simulations.

SARSA has the same performance as QL because greedy
policy, i.e., ✏ = 0, was used.

VI. CONCLUSION

We proposed a Markov Decision Process (MDP) formulation
for the resource allocation problem in Fog RAN for IoT
services with heterogeneous latency requirements. Several
reinforcement learning (RL) methods, namely Q-learning,
SARSA, Expected SARSA, andMonte Carlo, were discussed
for learning the optimum decision-making policy adaptive to
the IoT environment. Their superior performance over utility
filtering-based network slicing methods, and adaptivity to the
IoT environment were verified through extensive simulations.
The RL methods strike a right balance between the two con-
flicting objectives, maximize the average total served utility
vs. minimize the fog node’s idle time, which helps utilize fog
node’s limited resource blocks efficiently. As future work we
consider expanding the presented resource allocation frame-
work tomore challenging scenarios such as dynamic resource
allocation with heterogeneous service times and number of
resource blocks needed, and collaborative resource allocation
with multiple fog nodes.

REFERENCES

[1] Cisco Syst., ‘‘Cisco visual networking index: Global mobile data
traffic forecast update, 2017–2022,’’ Cisco Syst., Corporate Headquarters,
San Jose, CA, USA,White Paper, 2018. Accessed: Sep. 10, 2019. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-738429.html
and https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.pdf

[2] A. T. Nassar, A. I. Sulyman, and A. Alsanie, ‘‘Achievable RF coverage
and system capacity using millimeter wave cellular technologies in 5G
networks,’’ in Proc. IEEE 27th Can. Conf. Electr. Comput. Eng. (CCECE),
May 2014, pp. 1–6.

[3] A. I. Sulyman, A. T. Nassar, M. K. Samimi, G. R. MacCartney, Jr.,
T. S. Rappaport, and A. Alsanie, ‘‘Radio propagation path loss models for
5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands,’’
IEEE Commun. Mag., vol. 52, no. 9, pp. 78–86, Sep. 2014.

[4] B. Yang, Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, ‘‘Digital
beamforming-based massive MIMO transceiver for 5G millimeter-wave
communications,’’ IEEE Trans. Microw. Theory Techn., vol. 66, no. 7,
pp. 3403–3418, Jul. 2018.

[5] S. Rangan, T. S. Rappaport, and E. Erkip, ‘‘Millimeter-wave cellular
wireless networks: Potentials and challenges,’’ Proc. IEEE, vol. 102, no. 3,
pp. 366–385, Mar. 2014.

[6] J. Zhang, Z. Zheng, Y. Zhang, J. Xi, X. Zhao, and G. Gui, ‘‘3D MIMO for
5G NR: Several observations from 32 to massive 256 antennas based on
channel measurement,’’ IEEE Commun. Mag., vol. 56, no. 3, pp. 62–70,
Mar. 2018.

[7] S.-H. Park, O. Simeone, and S. Shamai (Shitz), ‘‘Joint optimization of
cloud and edge processing for fog radio access networks,’’ in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jul. 2016, pp. 315–319.

[8] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang, ‘‘Recent advances in
cloud radio access networks: System architectures, key techniques, and
open issues,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 2282–2308,
Aug. 2016.

[9] Z. Zhao, M. Peng, Z. Ding, W. Wang, and H. V. Poor, ‘‘Cluster content
caching: An energy-efficient approach to improve quality of service in
cloud radio access networks,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 5,
pp. 1207–1221, May 2016.

[10] M. Peng, C. Wang, V. Lau, and H. V. Poor, ‘‘Fronthaul-constrained cloud
radio access networks: Insights and challenges,’’ IEEE Wireless Commun.,
vol. 22, no. 2, pp. 152–160, Apr. 2015.

[11] W. Wang, V. K. N. Lau, and M. Peng, ‘‘Delay-aware uplink fronthaul allo-
cation in cloud radio access networks,’’ IEEE Trans. Wireless Commun.,
vol. 16, no. 7, pp. 4275–4287, Jul. 2017.

[12] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, ‘‘A survey
on mobile edge networks: Convergence of computing, caching and com-
munications,’’ IEEE Access, vol. 5, pp. 6757–6779, 2017.

[13] Y.-Y. Shih, W.-H. Chung, A.-C. Pang, T.-C. Chiu, and H.-Y. Wei,
‘‘Enabling low-latency applications in fog-radio access networks,’’ IEEE
Netw., vol. 31, no. 1, pp. 52–58, Jan. 2017.

[14] G. P. Fettweis, ‘‘The tactile Internet: Applications and challenges,’’ IEEE
Veh. Technol. Mag., vol. 9, no. 1, pp. 64–70, Mar. 2014.

[15] Q. Zheng, K. Zheng, H. Zhang, and V. C. M. Leung, ‘‘Delay-optimal
virtualized radio resource scheduling in software-defined vehicular net-
works via stochastic learning,’’ IEEE Trans. Veh. Technol., vol. 65, no. 10,
pp. 7857–7867, Oct. 2016.

[16] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari,
S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A.Mitschele-
Thiel, M. Müller, T. Elste, and M. Windisch, ‘‘Latency critical IoT appli-
cations in 5G: Perspective on the design of radio interface and network
architecture,’’ IEEE Commun. Mag., vol. 55, no. 2, pp. 70–78, Feb. 2017.

[17] Y. Sahni, J. Cao, S. Zhang, and L. Yang, ‘‘Edge mesh: A new paradigm to
enable distributed intelligence in Internet of Things,’’ IEEE Access, vol. 5,
pp. 16441–16458, 2017.

[18] A.-C. Pang, W.-H. Chung, T.-C. Chiu, and J. Zhang, ‘‘Latency-driven
cooperative task computing in multi-user fog-radio access networks,’’ in
Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017,
pp. 615–624.

[19] G. M. S. Rahman, M. Peng, K. Zhang, and S. Chen, ‘‘Radio resource
allocation for achieving ultra-low latency in fog radio access networks,’’
IEEE Access, vol. 6, pp. 17442–17454, 2018.

[20] J. Oueis, E. C. Strinati, and S. Barbarossa, ‘‘The fog balancing: Load
distribution for small cell cloud computing,’’ in Proc. 81st IEEE Veh.
Technol. Conf. (VTC Spring), May 2015, pp. 1–6.

[21] T.-C. Chiu, W.-H. Chung, A.-C. Pang, Y.-J. Yu, and P.-H. Yen, ‘‘Ultra-low
latency service provision in 5G fog-radio access networks,’’ in Proc. IEEE
27th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC),
Sep. 2016, pp. 1–6.

[22] E. Balevi and R. D. Gitlin, ‘‘Optimizing the number of fog nodes for cloud-
fog-thing networks,’’ IEEE Access, vol. 6, pp. 11173–11183, 2018.

[23] T. Gao, M. Chen, H. Gu, and C. Yin, ‘‘Reinforcement learning based
resource allocation in cache-enabled small cell networks with mobile
users,’’ in Proc. IEEE/CIC Int. Conf. Commun. China, Oct. 2017, pp. 1–6.

[24] D.-N. Vu, N.-N. Dao, and S. Cho, ‘‘Downlink sum-rate optimization
leveraging hungarian method in fog radio access networks,’’ in Proc. Int.
Conf. Inf. Netw. (ICOIN), Jan. 2018, pp. 56–60.

[25] Y.-J. Liu, S.-M. Cheng, and Y.-L. Hsueh, ‘‘eNB selection for machine
type communications using reinforcement learning basedMarkov decision
process,’’ IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 11330–11338,
Dec. 2017.

128024 VOLUME 7, 2019

A. Nassar, Y. Yilmaz: RL for Adaptive Resource Allocation in Fog RAN for IoT With Heterogeneous Latency Requirements

[26] M. Condoluci, T. Mahmoodi, E. Steinbach, and M. Dohler, ‘‘Soft resource
reservation for low-delayed teleoperation over mobile networks,’’ IEEE
Access, vol. 5, pp. 10445–10455, 2017.

[27] H. A. M. Name, F. O. Oladipo, and E. Ariwa, ‘‘User mobility and resource
scheduling and management in fog computing to support IoT devices,’’
in Proc. 7th Int. Conf. Innov. Comput. Technol. (INTECH), Aug. 2017,
pp. 191–196.

[28] M. Peng and K. Zhang, ‘‘Recent advances in fog radio access networks:
Performance analysis and radio resource allocation,’’ IEEE Access, vol. 4,
pp. 5003–5009, 2016.

[29] T. Park, N. Abuzainab, and W. Saad, ‘‘Learning how to communicate in
the Internet of Things: Finite resources and heterogeneity,’’ IEEE Access,
vol. 4, pp. 7063–7073, 2016.

[30] M. Yan, G. Feng, and S. Qin, ‘‘Multi-RAT access based on multi-agent
reinforcement learning,’’ inProc. IEEEGlobal Commun. Conf., Dec. 2017,
pp. 1–6.

[31] Y. Wei, F. R. Yu, M. Song, and Z. Han, ‘‘User scheduling and resource
allocation in HetNets with hybrid energy supply: An actor-critic reinforce-
ment learning approach,’’ IEEE Trans. Wireless Commun., vol. 17, no. 1,
pp. 680–692, Jan. 2018.

[32] H. Zhang, Y. Qiu, K. Long, G. K. Karagiannidis, X. Wang, and
A. Nallanathan, ‘‘Resource allocation in NOMA based fog radio
access networks,’’ 2018, arXiv:1803.05641. [Online]. Available:
https://arxiv.org/abs/1803.05641

[33] N. Mostafa, I. Al Ridhawi, and M. Aloqaily, ‘‘Fog resource selection using
historical executions,’’ in Proc. 3rd Int. Conf. Fog Mobile Edge Comput.
(FMEC), Apr. 2018, pp. 272–276.

[34] H. Xiang, W. Zhou, M. Daneshmand, and M. Peng, ‘‘Network slicing in
fog radio access networks: Issues and challenges,’’ IEEE Commun. Mag.,
vol. 55, no. 12, pp. 110–116, Dec. 2017.

[35] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, ‘‘Net-
work slicing and softwarization: A survey on principles, enabling tech-
nologies, and solutions,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 2429–2453, 3rd Quart., 2018.

[36] T. Dang andM. Peng, ‘‘Delay-aware radio resource allocation optimization
for network slicing in fog radio access networks,’’ in Proc. IEEE Int. Conf.
Commun. Workshops (ICC Workshops), May 2018, pp. 1–6.

[37] L. Tang, X. Zhang, H. Xiang, Y. Sun, and M. Peng, ‘‘Joint resource
allocation and caching placement for network slicing in fog radio access
networks,’’ in Proc. IEEE 18th Int. Workshop Signal Process. Adv. Wireless
Commun. (SPAWC), Jul. 2017, pp. 1–6.

[38] Y. Sun, M. Peng, S. Mao, and S. Yan, ‘‘Hierarchical radio resource alloca-
tion for network slicing in fog radio access networks,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 4, pp. 3866–3881, Apr. 2019.

[39] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, p. 529, 2015.

ALMUTHANNA NASSAR received the B.Sc.
degree in electrical engineering from Jordan
University of Science and Technology, Irbid,
Jordan, in 2006, and the M.Sc. degree in electrical
engineering from King Saud University, Riyadh,
Saudi Arabia, in 2014. He is currently pursuing
the Ph.D. degree in electrical engineering with the
University of South Florida, Tampa, FL, USA,
where he is also with the Secure and Intelligent
Systems Laboratory, EE Department. He was a

Radio Access Network Planning Specialist Manager with Etihad Etisalat
Company (mobily), Riyadh, from 2009 to 2017. He has more than ten years
of industry experience in RAN planning and design of multi-technology
cellular networks. His current research interests include the IoT, 5G com-
munications, and reinforcement learning.

YASIN YILMAZ (S’11–M’14) received the Ph.D.
degree in electrical engineering from Columbia
University, New York, NY, USA, in 2014. He is
currently an Assistant Professor of electrical engi-
neering with the University of South Florida,
Tampa, FL, USA. His current research inter-
ests include statistical signal processing, machine
learning, and their applications to cybersecurity,
cyber-physical systems, the Internet-of-Things
networks, communication systems, energy sys-

tems, transportation systems, and social and environmental systems. He was
a recipient of the Collaborative Research Award from Columbia University,
in 2015, and the Research Initiation Award from the Southeastern Center for
Electrical Engineering Education, in 2017.

VOLUME 7, 2019 128025

